Math 304 Sample Final

Name:

This exam has 11 questions, for a total of 150 points.
Please answer each question in the space provided. Please write full solutions, not just answers. Cross out anything the grader should ignore and circle or box the final answer.

Question	Points	Score
1	10	
2	15	
3	10	
4	10	
5	10	
6	20	
7	20	
8	15	
9	10	
10	15	
11	15	
Total:	150	

Question 1. (10 pts)

Determine the following statements are true or false.
(a) If B is diagonalizable, then B^{2} is also diagonalizable.

Solution: True.
(b) If $\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{n}$ span \mathbb{R}^{8}, then n must be 8.

Solution: False.
(c) If $\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{n}$ are linear independent in \mathbb{R}^{7}, then n must be at most 7 .

Solution: True.
(d) Suppose that A is a diagonalizable 5×5 matrix. If $A^{5}=0$, then A must be the zero matrix.

Solution: True.
(e) Suppose \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3} form a basis of \mathbb{R}^{3}, then $\vec{v}_{1},\left(\vec{v}_{1}+\vec{v}_{2}\right)$ and $\left(\vec{v}_{1}+\vec{v}_{2}+\vec{v}_{3}\right)$ also form a basis of \mathbb{R}^{3}.

Solution: True.

Question 2. (15 pts)

(a) Let A be a (4×4) matrix. We view A as a linear mapping $\mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$. Suppose $\operatorname{det}(A) \neq 0$. What is the dimension of the range of A ? Justify your answer.

Solution: $\operatorname{det} A \neq 0$ implies that $\operatorname{Ker} A=\{0\}$. We know that

$$
\operatorname{dim} \mathbb{R}^{4}=\operatorname{dim} \operatorname{Im} A+\operatorname{dim} \operatorname{Ker} A
$$

Therefore,

$$
\operatorname{dim} \operatorname{Im} A=4-0=4
$$

(b) Suppose $F: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ is linear mapping. Is it possible that $\operatorname{dim} \operatorname{ker} F=0$? Justify your answer.

Solution: We have the following formula

$$
\operatorname{dim} R^{5}=\operatorname{dim} \operatorname{Ker} F+\operatorname{dim} \operatorname{Im} F
$$

Note that $\operatorname{dim} \operatorname{Im} F$ is a subspace of \mathbb{R}^{3}. In particular,

$$
\operatorname{dim} \operatorname{Im} F \leq 3
$$

We also know that

$$
\operatorname{dim} R^{5}=\operatorname{dim} \operatorname{Im} F+\operatorname{dim} \operatorname{Ker} F .
$$

This implies that $\operatorname{dim} \operatorname{Ker} F=5-\operatorname{dim} \operatorname{Im} F \geq 2$. So F cannot be injective.
(c) Let $B: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear mapping. What are the possible integer values that $\operatorname{dim}(\operatorname{ker} B)$ can take? List all possibilities.

Solution: All possible values of $\operatorname{dim}(\operatorname{ker} B)$ are 0,1 and 2 .

Question 3. (10 pts)
Find the determinant of
$\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]$

Solution: It is a standard computation. I skip the details. The determinant is -1 .

Question 4. (10 pts)

Find all eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{cc}
4 & 2-i \\
2+i & 0
\end{array}\right]
$$

Solution:

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
4-\lambda & 2-i \\
2+i & -\lambda
\end{array}\right|=-\lambda(4-\lambda)-5=(\lambda-5)(\lambda+1)
$$

When $\lambda=5$, the eigenvector is

$$
v=\left[\begin{array}{c}
(2-i) \\
1
\end{array}\right]
$$

When $\lambda=-1$, the eigenvector is

$$
w=\left[\begin{array}{c}
-1 \\
(2+i)
\end{array}\right]
$$

Question 5. (10 pts)

Given the vectors

$$
u_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right], u_{2}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
0
\end{array}\right], u_{3}=\left[\begin{array}{l}
1 \\
5 \\
8 \\
1
\end{array}\right]
$$

in \mathbb{R}^{4}. Determined whether $v=(3,0,1,4)^{T}$ is in the span of u_{1}, u_{2}, u_{3}.

Solution: Form the augmented matrix

$$
\left[\begin{array}{lll|l}
1 & 1 & 1 & 3 \\
1 & 2 & 5 & 0 \\
1 & 3 & 8 & 1 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

Its row echelon form is

$$
\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
0 & 1 & 4 & -3 \\
0 & 0 & 1 & -4 \\
0 & 0 & 0 & 8
\end{array}\right]
$$

So the system is inconsistent. So v is not in the span of u_{1}, u_{2}, u_{3}.

Question 6. (20 pts)
Given the matrix

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 2 & 4 \\
0 & 1 & -3 & -1 \\
3 & 4 & -6 & 8 \\
0 & -1 & 3 & 1
\end{array}\right]
$$

(a) Find the reduced row echelon form of A.

Solution: I skip the details. The row echelon form is

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 2 & 4 \\
0 & 1 & -3 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(b) Find a basis for the kernel of A.

Solution: All elements in the kernel are of the form

$$
s\left(\begin{array}{r}
-4 \\
1 \\
0 \\
1
\end{array}\right)+t\left(\begin{array}{r}
-2 \\
3 \\
1 \\
0
\end{array}\right)
$$

So

$$
v_{1}=\left(\begin{array}{r}
-4 \\
1 \\
0 \\
1
\end{array}\right), v_{2}=\left(\begin{array}{r}
-2 \\
3 \\
1 \\
0
\end{array}\right)
$$

form a basis of $\operatorname{ker} A$.
(c) Find a basis for the range of A.

Solution: The first and second columns contain pivotal entries. So the corresponding columns in A form a basis of the range of A, that is,

$$
\left(\begin{array}{l}
1 \\
0 \\
3 \\
0
\end{array}\right),\left(\begin{array}{r}
0 \\
1 \\
4 \\
-1
\end{array}\right)
$$

Question 7. (20 pts)

Determine whether the matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ is diagonalizable. If yes, find a nonsingular matrix S and a diagonal matrix D such that $A=S D S^{-1}$.

Solution: Use cofactor expansion along the first column

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & 1 & 1 \\
0 & -\lambda & 0 \\
0 & 0 & -\lambda
\end{array}\right|=(1-\lambda) \lambda^{2}
$$

So $\lambda=1$ and 0 .
When $\lambda=1$, solve for the kernel of the matrix

$$
\left[\begin{array}{ccc}
0 & 1 & 1 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

We find an eigenvector $v=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.
When $\lambda=0$, solve for the kernel of the matrix

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

We find an eigenvector $w_{1}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$ and $w_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$.
We can verify that v, w_{1} and w_{2} are linearly independent. It follows that A has 3 linearly independent eigenvectors, so A is diagonalizable.
Let

$$
S=\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { and } D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Then $A=S D S^{-1}$.

Question 8. (15 pts)

Let V be the subspace of \mathbb{R}^{4} spanned by

$$
\vec{v}_{1}=\left[\begin{array}{l}
0 \\
4 \\
0 \\
0
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
1 \\
3 \\
0 \\
1
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{l}
4 \\
5 \\
8 \\
4
\end{array}\right] .
$$

(a) Use Gram-Schmidt process to find an orthonormal basis of V.

Solution: I skip the details.

$$
\begin{gathered}
u_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=(0,1,0,0)^{T} \\
u_{2}=\left(\frac{1}{\sqrt{2}}, 0,0, \frac{1}{\sqrt{2}}\right)^{T} \\
u_{3}=(0,0,1,0)^{T}
\end{gathered}
$$

(b) Find the projection of

$$
\vec{x}=\left[\begin{array}{c}
3 \\
-1 \\
5 \\
0
\end{array}\right]
$$

onto V.

Solution: The projection is

$$
\left\langle\vec{x}, u_{1}\right\rangle u_{1}+\left\langle\vec{x}, u_{2}\right\rangle u_{2}+\left\langle\vec{x}, u_{3}\right\rangle u_{3}=\left[\begin{array}{c}
3 / 2 \\
-1 \\
5 \\
3 / 2
\end{array}\right]
$$

Question 9. (10 pts)

Let $\mathbb{P}_{2}=\{$ all polynomials of degree $\leq 2\}$. We define the following inner product on \mathbb{P}_{2} :

$$
\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x
$$

Find the angle between $x+1$ and x^{2}.

Solution:

$$
\|x+1\|^{2}=\int_{-1}^{1}(x+1)^{2} d x=\frac{8}{3}
$$

So $\|x+1\|=\sqrt{\frac{8}{3}}$. Similarly, we compute $\left\|x^{2}\right\|=\sqrt{\frac{2}{5}}$.

$$
\left\langle x+1, x^{2}\right\rangle=\frac{2}{3}
$$

So

$$
\cos \theta=\frac{\left\langle x+1, x^{2}\right\rangle}{\|x+1\|\left\|x^{2}\right\|}=\frac{\sqrt{15}}{6}
$$

The angle is

$$
\theta=\arccos \left(\frac{\sqrt{15}}{6}\right)
$$

Question 10. (15 pts)

Let $V=\operatorname{span}\left(e^{x}, e^{-x}, x e^{x}, x e^{-x}\right)$ be a subspace of C^{∞}. We know that V is a vector space with a basis

$$
e^{x}, e^{-x}, x e^{x}, x e^{-x}
$$

Let us denote this basis by \mathfrak{B}. Let

$$
T(f)=2 f-f^{\prime}
$$

be a linear transformation from V to V.
(a) Find the matrix representation of T with the basis \mathfrak{B}.

Solution: The matrix is

$$
A=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 3 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

(b) Is T nonsingular? Justify your answer.

Solution:

$$
\operatorname{det}(A)=9 \neq 0
$$

So T is nonsingular.

Question 11. (15 pts)

The eigenvalues and corresponding eigenvectors of the matrix $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3\end{array}\right]$ are $\lambda_{1}=1$ with $v_{1}=(1,0,0)^{T}, \lambda_{2}=2$ with $v_{2}=(1,1,0)^{T}$ and $\lambda_{3}=3$ with $v_{3}=(1,2,1)^{T}$.
(a) Find the general solution to the system

$$
\frac{d \mathrm{x}}{d t}=A \mathrm{x} .
$$

Solution: The general solution is

$$
\mathbf{x}(t)=c_{1} e^{t}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+c_{3} e^{3 t}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

In other words,

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} e^{t}+c_{2} e^{2 t}+c_{3} e^{3 t} \\
c_{2} e^{2 t}+2 c_{3} e^{3 t} \\
c_{3} e^{3 t}
\end{array}\right]
$$

(b) Find a specific solution $\mathbf{x}(t)$ such that

$$
\mathbf{x}(0)=\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0) \\
x_{3}(0)
\end{array}\right]=\left[\begin{array}{l}
6 \\
4 \\
1
\end{array}\right]
$$

when $t=0$.

Solution:

$$
\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0) \\
x_{3}(0)
\end{array}\right]=\left[\begin{array}{c}
c_{1}+c_{2}+c_{3} \\
c_{1}+2 c_{3} \\
c_{3}
\end{array}\right] .
$$

Therefore, we need to solve for c_{1}, c_{2} and c_{3} of the following linear system

$$
\left[\begin{array}{c}
c_{1}+c_{2}+c_{3} \\
c_{1}+2 c_{3} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
6 \\
4 \\
1
\end{array}\right]
$$

which has a unique solution $c_{1}=3, c_{2}=2$ and $c_{3}=1$. So the solution satisfying the given initial condition is

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
3 e^{t}+2 e^{2 t}+e^{3 t} \\
2 e^{2 t}+2 e^{3 t} \\
e^{3 t}
\end{array}\right]
$$

